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Abstract

The sequential bond energies of K+ with ammonia are determined using collision-induced dissociation (CID) with xenon
gas in a guided ion beam tandem mass spectrometer. The kinetic energy dependences of the CID cross-sections are analyzed
to give 0 and 298 K bond energies for the successive loss of ammonia after accounting for multiple collisions, internal energy,
and dissociation lifetimes. We also consider whether to treat torsional motions as vibrations or rotations and whether to include
the ion–dipole potential in the treatment of the transition state for dissociation. Bond energies at 0 K (in kJ/mol) of K+(NH3)x
are determined forx = 1–5 as 79±7, 69±6, 59±5, 46±6, 31±11, respectively, decreasing with increasingx as expected for
electrostatic bonds. These dissociation energies agree quantitatively with literature values available from equilibrium studies
for x = 1–4 (mean absolute deviation= 2± 1 kJ/mol). This agreement suggests that these systems can be used to test theory
for K+ complexes, and therefore several levels of theory are explored here. Thex = 1–5 complexes are calculated to adopt
high symmetry structures where the ligands bind directly to the metal. We find that trends in the experimental bond energies are
accurately reproduced at the MP2(full)/6-311+G(2d,2p)//MP2(full)/6-31G(d) and B3LYP/6-311+G(2d,2p)//B3LYP/6-31G
levels, although the values are generally low, by an average of 4± 3 kJ/mol (8± 3%). Values obtained using the effective
core potentials of Hay–Wadt and Stuttgart–Dresden on potassium are less satisfactory and underestimate experiment by an
average of 9± 6 kJ/mol (14± 7%). (Int J Mass Spectrom 222 (2003) 329–349)
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The biological importance of potassium is well
known. In ion channels of the nervous system, the
binding of potassium to ligands is an essential part of
the mechanism for message transport[1]. Because of
the steric requirements of these small ion channels,
potassium transport may be inhibited or enhanced
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by its complexation to various sized ligands, in par-
ticular, water[2–4]. Therefore, an understanding of
the solvation of potassium ions may provide useful
information regarding the functionality of this metal
ion in biological systems, in addition to being of
fundamental interest.

In the present work, we examine the solvation of
K+ by ammonia, a system for which there are several
experimental studies in the literature[5–8]. High-
pressure mass spectrometry (HPMS) was used by
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Davidson and Kebarle to determine the tempera-
ture dependent equilibrium constant for formation of
K+(NH3) [5]. Castleman extended such HPMS stud-
ies to one to four ammonia ligands, determining the
sequential bond enthalpies[6]. Early collision-induced
dissociation (CID) studies using a triple quadrupole
instrument were done by Marinelli and Squires to
obtain the bond energy for the single ligand complex
[7]. Matrix IR spectroscopic studies of the potassium
ammonia complex have also been investigated[8].
These spectroscopic studies probed the trends in the
intensities of the�1–4 bands of alkali metal ammo-
nia complexes primarily to investigate the effects of
charge transfer.

Recently, our laboratory has used threshold colli-
sion-induced dissociation (TCID) methods to measure
bond dissociation energies (BDEs) of a variety of lig-
ands to the alkali metal cations[9–11]. In the present
work, we extend these studies to obtain quantitative
BDEs for the K+(NH3)x systems for up tox = 5
ligands. We find good agreement with values for
x = 1–4 obtained from the HPMS studies of Castle-
man, indicating that these complexes may be used as
benchmarks for other experimental work and for the-
ory. On the experimental side, we use this comparison
to decide whether torsional motions in the K+(NH3)x
complexes are best treated as vibrations or rotations.
In addition, we examine whether the ion–dipole po-
tential should be included in our description of the
transition state for dissociation, as used in our statis-
tical analysis of the kinetics of the CID process.

Several theoretical calculations have also been
done on potassium ion ammonia complexes[12–14].
K+(NH3) was studied by Berthod and Pullman[12]
and by Magnusson and Moriarty[14], whereas Kaupp
and Schleyer examined the complexes containing one
and two ammonia molecules[13]. The focal point of
these computational studies was to assess both the
geometric and energetic properties of the systems. In
the present work, we examine the structures and ener-
getics of the five K+(NH3)x , x = 1–5, complexes at
several levels of theory. We are particularly interested
in whether calculations employing effective core po-
tentials on potassium can accurately reproduce the

bond energies for these species as some difficulties
were observed in our work on K+(C6H6)x , x = 1 and
2 [9]. A comparison between experiment and theory
allows an evaluation of several theoretical methods
and suggests the need for improvements.

2. Experimental and computational details

2.1. Experimental procedures

The experimental cross-sections for the CID of the
K+(NH3)x complexes are measured using a guided
ion beam tandem mass spectrometer. A complete
description of the instrument is given in the litera-
ture [15–17]. Potassium cation–ammonia clusters are
generated in a 1-m long flow tube with 0.5–0.7 Torr
of helium mixed with ∼10% argon at a flow rate
of 6500–7500 sccm. Potassium ions are created by
a continuous dc-discharge source, which comprises
a water-cooled metal rod made from tantalum with
a cavity containing potassium metal. The cathode is
held to a voltage of about−2 kV. K+(NH3)x com-
plexes are formed by associative three-body reactions
of the potassium ions with ammonia introduced to
the flow about 50 cm downstream of the dc discharge.
The ion complexes experience 0.5× 105–1× 105 col-
lisions with the surrounding room temperature buffer
gas, which should thermalize the ions both rotation-
ally and vibrationally. The complexes should be in
their ground electronic states with internal energies
described well by a Maxwell–Boltzmann distribution
at this temperature. This has been shown to be a good
assumption in other works[18–22].

The ions are extracted from this source and focused
into a magnetic momentum analyzer for mass selec-
tion. These mass selected ionic complexes are then
decelerated to a specific kinetic energy and focused
into an octopole ion guide that contains the ions in the
radial direction using radio-frequency electric fields
[23]. The octopole passes through a static gas cell con-
taining xenon at pressures between 0.05 and 0.2 mTorr,
which limits the possibility of multiple collisions. The
octopole guide efficiently collects scattered reactant
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and product ions and allows them to drift to the end
of the octopole. There they are extracted, focused
into a quadrupole mass filter, and then detected by
a secondary electron-scintillator-phototube detector
and standard pulse counting techniques. Ion intensi-
ties are converted to absolute cross-sections that have
uncertainties of about±20% resulting from uncer-
tainties in the collision gas pressure and reaction path
length[15].

Collision energies are converted from the laboratory
(lab) frame into the center-of-mass (CM) frame by the
equationECM = Elabm/(m+M) wherem is the mass
of the reactant neutral andM is the mass of the reac-
tant ion. All energies reported below are in the CM
frame unless otherwise noted. The absolute zero and
distribution of the ion kinetic energies are determined
using the octopole ion guide as a retarding potential
analyzer as previously described[15]. Because the re-
action zone and energy analysis region are physically
the same, ambiguities in the energy analysis resulting
from contact potentials, space charge effects, and fo-
cusing aberrations are minimized[15]. The distribu-
tion of ion kinetic energies is nearly Gaussian with a
fwhm typically between 0.2 and 0.3 eV (lab) for these
experiments. The uncertainty in the absolute energy
scale is±0.05 eV (lab).

2.2. Data analysis

The kinetic energy dependence of the CID cross-
sections is modeled usingEq. (1):

σ(E) = σ0

∑ gi(E + Ei − E0)
n

E
(1)

whereσ 0 is a scaling factor that is independent of the
energy,E is the relative translational energy of the re-
actants,E0 is the threshold for reaction at zero Kelvin,
andn is an adjustable fitting parameter that describes
the efficiency of collisional energy transfer[17]. This
summation is over the rotational and vibrational states
of the reactant complexes having excitation energies,
Ei , and populations,gi , where

∑
gi = 1. We use the

Beyer–Swinehart algorithm[24–27] to calculate the
ro-vibrational energy distribution of the ionic com-

plexes at 298 K using molecular constants scaled from
ab initio calculations, as detailed below. Uncertain-
ties in the molecular constants from the calculations
are estimated by scaling the frequencies by±10%.
This method is consistent with studies done by Pople
and co-workers[28] and DeFrees and McLean[29] to
cover the range of scale factors necessary to draw cal-
culated frequencies into agreement with experimental
frequencies.

We also consider the possibility that the collision-
ally activated complexes do not dissociate on the time
scale of the experiment, about 5× 10−4 s [17]. This
is achieved by including Rice–Ramsperger–Kassel–
Marcus (RRKM) statistical theory[27] for unimolec-
ular dissociation intoEq. (1), as detailed elsewhere
[20,30]and given inEq. (2).

σ(E)=
(nσ0

E

) ∑
i

gi

∫ E

E0−Ei
[1 − e−k(ε+Ei)τ ]

× (E − ε)n−1 dε (2)

Here,ε is the energy deposited into the complex by
the collision with Xe,τ is the average experimental
time available for dissociation (the ion time-of-flight
from the collision cell to the quadrupole mass an-
alyzer), andk(ε + Ei) = k(E∗) is the RRKM uni-
molecular dissociation rate constant. In the limit that
k(E∗) is faster than the time-of-flight of the ions, this
integration recoversEq. (1). Recent work has shown
that the distribution of deposited energies used in
Eq. (2) is consistent with experiment[17] and prop-
erly characterized by the parametern. The RRKM
analysis requires ro-vibrational frequency sets for the
energized molecules and transition states. Because
these complexes have largely electrostatic interac-
tions, the transition states are assumed to be loose and
to occur at the centrifugal barrier for interaction of
K+(NH3)x−1+NH3, a phase space limit (PSL). Thus,
the transition state has molecular parameters equiva-
lent to the products, as discussed elsewhere[30].

The external 2D rotors of the energized complex
are assumed to be adiabatic and centrifugal effects are
included as outlined by Waage and Rabinovitch[31].
As originally formulated by Rodgers et al.[30], the
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average unimolecular dissociation rate constant for a
statistical distribution of rotational quantum numbers
was determined usingEq. (3):

〈k(E∗, J )〉 =
∑Jmax
J=0k(E

∗, J )gJ ρvr(E
∗ − ER(J ))∑Jmax

J=0gJ ρvr(E∗ − ER(J ))
(3)

where J is the rotational quantum number,gJ =
(2J + 1) is the degeneracy of the 2D rotor,ER(J) is
the energy in the 2D external rotation of the complex,
ρvr(E

∗−ER(J )) is the density of ro-vibrational states
of the complex at the available energy not tied up in
the 2D external rotation, andJmax is the maximum
value possible for the rotational quantum number
determined by energy conservation. This average dis-
sociation rate constant is then used to calculate the
dissociation probability, [1− e−〈k(E∗,J )〉τ ]. We will
refer to this model as the average rate constant model.
DeTuri and Ervin[32] later pointed out that the most
precise treatment of single channel CID processes was
probably to average the entire dissociation probability
over the statistical distribution of rotational quantum
numbers,Eq. (4), and use this expression inEq. (2).

〈1 − e−k(E∗,J )τ 〉

=
∑Jmax
J=0[1 − e−k(E∗,J )τ ]gJ ρvr(E

∗ −ER(J ))∑Jmax
J=0gJ ρvr(E∗ − ER(J ))

(4)

We refer to this model as the average dissociation
probability model here.

In our previous work, the centrifugal barrier to
dissociation has been assigned on the basis of a
long-range potential given by the ion-induced dipole
interaction. In cases like the present systems, the
long-range interaction should include the potential
associated with the interaction of the ion and the per-
manent dipole moment of the ligand. Here we alter
our treatment of the centrifugal barrier to include a
long-range ion-locked dipole attraction, chosen for
simplicity. This limit, combined with ignoring the
ion–dipole potential, should provide adequate repre-
sentations of the effects of a dipole on the long-range
potential and the dissociation behavior. Because the
ligand starts aligned in the complex, the ion-locked

dipole potential may be a reasonable limit to con-
sider and is given byVLD = −eµD/4πε0r2, where
µD is the dipole moment of the neutral product,e is
the charge of an electron,ε0 is the permittivity of a
vacuum, andr is the distance between the products.
Thus, the effective potential is given by

Veff(r) = L2

2µr2
− αe2

8πε0r4
− eµD

4πε0r2
(5)

whereL is the orbital angular momentum of the prod-
ucts,µ is the reduced mass of the products, andα
is the polarizability of the neutral product. To find
the height of the centrifugal barrier,Veff (r∗), which
is equated with the rotational energy of the transition

state,E†
R(J ), we set the derivative ofVeff (r) with re-

spect tor equal to zero, solve for the position of the
barrier,r∗, and substitute back into the expression for
Veff (r). This givesEq. (6):

E
†
R(J ) = Veff(r

∗) = πε0

2αe2

[
L2

µ
− eµD

2πε0

]2

(6)

We then equateL with the rotational angular momen-
tum of the energized molecule, [J (J+1)�2]1/2, which
is related to the rotational energy of the energized
molecule,ER(J ) = hcBJ(J +1), whereB is the rota-
tional constant of the energized molecule. Thus,L2 =
�

2ER(J )/hcB, such that the height of the centrifugal
barrier is determined by various molecular parameters
and the rotational energy of the energized molecule,
for which several assumptions are possible, as outlined
previously[30]. It can be shown that the addition of
the dipole term to the potential moves the centrifugal
barrier to largerr and decreases its height, leading to
a smaller kinetic shift. (In assessing expression (6), it
is important to realize that the term in square brackets
can be negative when the ion–dipole term,eµD/2πε0,
is more attractive than the orbital angular momentum
term, L2/µ = �2ER(J )/hcBµ. Under these condi-
tions, the height of the centrifugal barrier,Veff (r∗), is
zero, rather than being given by expression (6).)

The model presented inEq. (1)applies to reactions
that are driven by translational motion[33], and re-
produces reaction cross-sections accurately in many
atom–diatom and polyatomic reactions[34,35], as
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well as in CID experiments[11,18,20,22,30,36–40].
In addition, we have recently demonstrated that the
cross-section form given inEq. (1) is consistent with
direct measurements of the energy transferred in
collisions between Cr(CO)6

+ and Xe [17], a result
that provides increased confidence in the use of this
model to obtain accurate thermodynamic informa-
tion from CID thresholds. Before comparison to the
data, this model is convoluted over the kinetic energy
distributions of the reactants[15]. The parameters,
E0, σ 0, and n, are then optimized by a non-linear
least-squares analysis. Included in the error of theE0

measurement are variations in the thresholds associ-
ated with different data sets (minimum of 3), those
from scaling vibrational frequencies up and down by
10%, and the uncertainty in the absolute energy scale.
When RRKM analysis is included in the modeling,
an uncertainty associated with scaling the flight time
available for dissociation (5× 10−4 s) up and down
by a factor of 2 is also included.

After convolution over the kinetic energy distribu-
tions of the reactants, the threshold model ofEq. (1)
includes all sources of energy available to the reac-
tants. The assumption that all energies are capable
of contributing to dissociation is reasonable because
the rotational and vibrational energy of the reactants
is repartitioned throughout the ion complex upon
collision with Xe. By definition, the threshold is the
minimum amount of energy needed to dissociate the
reactants to products with an internal temperature
of 0 K. These various assumptions have been inves-
tigated previously[11,18,20,22,30,36]and found to
provide satisfactory thermochemical results. There-
fore, threshold energies obtained from analysis of the
data usingEq. (1) are converted into bond energies
under the assumption thatE0 is the energy difference
between the reactants and products at 0 K[22]. This
assumes that there are no activation barriers for the re-
action that exceed the endothermicity of dissociation.
For the metal–ligand dissociations studied here[34],
this is reasonable because of the attractive long-range
ion–dipole and ion-induced dipole interactions and
because these processes are simple heterolytic bond
fissions[41].

2.3. Computational details

Gaussian 98W[42] was used to carry out calcula-
tions on the ligand and metal–ion–ligand complexes
for K+(NH3)x wherex = 1–5. Geometry optimiza-
tions and vibrational analyses were initially conducted
at the MP2(full)/6-31G(d) level[43–45]. Hoyau et al.
[46] and we [10,47] have shown that this level of
theory provides an adequate description of sodium
cation complexes and magnesium cation complexes.
Initial geometry optimizations led to geometries hav-
ing imaginary frequencies corresponding to rotations
of the ammonia ligands around the K–N axis. Con-
straining the geometries to symmetric equilibrium
structures eliminates these imaginary frequencies,
verifying that the symmetric geometries correspond
to true minima on the potential energy surfaces. When
vibrational frequencies are used to model our data or
to estimate thermal corrections, they are scaled by a
factor of 0.9646, as discussed elsewhere[48]. The
vibrational frequencies and rotational constants of the
optimized geometries can be found inTables 1 and 2.

To accurately determine the absolute energy of the
complexes, single point energy calculations at the MP2
(full)/6-311+G(2d,2p) level were performed using the
optimized MP2(full)/6-31G(d) geometries. Correc-
tions for zero-point energy (ZPE) and basis set super-
position error (BSSE) were included to give a 0 K bond
energy,D0. This procedure utilizes the full counter-
poise approximation[49,50] and has previously been
shown to provide a reasonable description of other
alkali metal–ligand systems[9,10,46]. For the smaller
(x ≤ 3) clusters, the BSSE approached 3 kJ/mol and
the maximum BSSE was 4 kJ/mol for K+(NH3)5.
However, we also consider the possibility that the full
counterpoise approximation overestimates the BSSE
by reporting values without corrections for BSSE.

To augment these computational studies, we also
calculated geometries and single point energies using
the same sequence of MP2 calculations but utilizing
effective core potentials (ECPs) on the potassium ion.
Both the relativistic ECPs of Hay–Wadt (HW)[51],
equivalent to the Los Alamos ECP (LANL2DZ) ba-
sis set, and Stuttgart–Dresden (SD)[52] were used
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Table 1
Vibrational frequencies (cm−1) of K+(NH3)x complexes and internal energies (eV) at 300 Ka

Species Eint Torsional
modes

K+-ligand frequencies Ligand frequencies

NH3 0.001 1118, 1693(2), 3383, 3534(2)
K+(NH3) 0.031 215, 420(2) 1299, 1690(2), 3359, 3484(2)
K+(NH3)2 0.117 11 14(2), 171, 226, 391(2), 401(2) 1280(2), 1690(4), 3362(2), 3490(4)
K+(NH3)3 0.180 14(2), 20 16, 19(2), 164, 200(2), 338, 362(2), 384(2), 391 1263(3), 1690(6), 3364(3), 3495(6)
K+(NH3)4 0.271 4, 21(3) 25(2), 30(3), 156, 181(3), 306(3), 352(2), 371(3) 1237(3), 1244, 1690(8), 3367(4), 3501(8)
K+(NH3)5 0.373 17(2), 19,

49, 50
9(2), 44(2), 47(3), 125, 144, 166(3), 229(2),
272, 274(2), 336, 352(4)

1207, 1210, 1214(2), 1221, 1689(10),
3370(5), 3507(10)

K+(NH3)4(NH3) 0.380 9, 17(2) 13, 20, 24(2), 29, 80, 90, 135, 162, 176,
183(2), 198, 205, 268, 290, 309, 321, 342,
349, 355, 405, 463, 529

1224, 1229, 1232, 1235, 1253, 1689(8),
1714, 1723, 3342, 3348, 3366, 3368(2),
3474, 3480, 3498, 3502(3), 3503, 3504,
3506(2)

a Degeneracies in parentheses. Frequencies calculated at MP2(full)/6-31G(d) level.

Table 2
Rotational constants (cm−1) of K+(NH3)x complexesa

Species Symmetry 1D 2D Internal rotors

NH3 C3v 6.32 9.87 –
K+(NH3) C3v 6.39 0.17 –
K+(NH3)2 D3d 3.19 0.058 12.63
K+(NH3)3 C3h 0.038 0.074 12.63, 6.46, 3.19
K+(NH3)4 Td 0.041 0.041 12.63(2), 3.19(2)
K+(NH3)5 C3h 0.036 0.031 12.63(2), 6.46(2), 3.19
K+(NH3)4(NH3) Cs 0.051 0.021 12.63, 6.35, 3.19

a Degeneracies in parentheses. Calculated at MP2(full)/6-31G(d) level.

for this purpose. Further, we substituted the B3LYP
density functional for MP2 theory in the geometry
optimizations using the 6-31G(d) basis set and sin-
gle point energies using the 6-311+G(2d,2p) basis
set. This utilizes Becke’s three parameter functional
[53] and the correlation functionals of Lee, Yang,
and Parr (LYP) [54]. Finally, we also calculated
MP2(full)/6-311+G(2d,2p) single point energies us-
ing the B3LYP/6-31G(d) geometries. In all of these
cases, separate BSSE calculations in the full coun-
terpoise limit were performed, but zero point energy
corrections used the same set of scaled MP2 frequen-
cies calculated as noted above.

3. Results

The interactions of potassium ion–ammonia com-
plexes with Xe were studied from thermal to fairly

high energies (3–7 eV in the center-of-mass frame) in
order to observe all possible dissociation products and
to check for any unusual dissociations or anomalies in
the CID data. In addition, scans were performed over
a wide range of masses to ensure that no contaminants
were present in either reactant. Xenon was used as the
collision partner because of its efficiency of transla-
tional energy transfer[55,56]. The Xe pressure depen-
dence of the CID cross-sections was investigated over
the range of 0.05–0.2 mTorr and found to be small
for all of the CID systems studied (within the stated
20% experimental uncertainty). Nevertheless, extrap-
olations to zero Xe pressure were done to provide
rigorous single collision cross-sections for analysis
in all cases. For the case of K+(NH3)5, the primary
product intensity at the highest pressure examined
(0.2 mTorr) was greater than that of the reactant ion
beam, indicating that tertiary collisions are probable.
To avoid difficulties associated with this, we collected
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data between 0.02–0.1 mTorr to allow for a true linear
extrapolation of the data sets to zero pressure. Unfor-
tunately, the intensity of this ion was also the smallest
of those examined here (∼5000 counts/s) such that
the data for this complex are particularly noisy.

The cross-section data for the CID of K+(NH3)x ,
x = 1 and 4, with Xe are shown inFig. 1, and are
representative of the behavior of all complexes. In all
cases, the dominant reactions observed are the CID

Fig. 1. Cross-sections for collision-induced dissociation of K+(NH3)x wherex = 1–5 (parts (a–e), respectively) with Xe as a function of
kinetic energy in the center-of-mass frame (lowerx-axis) and the laboratory frame (upperx-axis).

process (7).

K+(NH3)x + Xe → K+(NH3)x−1 + NH3 + Xe (7)

For x > 1, we also observe sequential loss of ad-
ditional ligands at higher energies,Fig. 1b. The
cross-sections for reaction (7) in all five systems
increase steeply from a threshold energy that gradu-
ally decreases with increasing cluster size. Because
of the lower thresholds and the larger physical size



336 C. Iceman, P.B. Armentrout / International Journal of Mass Spectrometry 222 (2003) 329–349

Fig. 1. (Continued ).

of the complexes, the magnitudes of the reaction
cross-sections increase withx. The cross-sections
level off at higher energies and then decline as ad-
ditional ligands can be lost. The energetic behavior
observed for the secondary ligand loss channels indi-
cates that these reactions occur by sequential loss of
the ammonia ligands in all cases.

The only other process observed was ligand ex-
change to produce KXe+ in the K+(NH3) reac-

tion (Fig. 1a). This cross-section does not exceed
5 × 10−17 cm2, and hence it is not surprising that
analogous processes were not observed for any of the
larger complexes.

3.1. Threshold analysis

The RRKM analysis of the CID cross-sections is
treated using a loose phase space limit (PSL) model for



C. Iceman, P.B. Armentrout / International Journal of Mass Spectrometry 222 (2003) 329–349 337

Fig. 1. (Continued ).

the transition state, as described above. Many previous
studies have shown that this model allows an accurate
description of the magnitude of the kinetic shifts in
the CID of metal–ligand complexes[11,30,36,38–40].
The total reaction cross-section for ligand dissociation
was modeled for all complexes (although this is equiv-
alent to only the primary dissociation process forx =
1 and 2) because the shapes of the cross-sections for
the K+(NH3)x−1 channels are influenced by the sub-
sequent decompositions in thex = 4 and 5 complexes.

The CID cross-sections were analyzed using two
different sets of frequencies for the molecular param-
eters used in the RRKM calculations. In one set, all
frequencies are taken directly from theory,Table 1,
which is expected to be accurate for all higher fre-
quencies. However, several of the very low frequency
motions (<50 cm−1) were found to correspond to
internal torsions of the ligands rotating about their
K–N bonds. Thus, the second set of molecular param-
eters treats these motions as free rotors and replaces
the calculated vibrational frequencies with rotational
constants for such motions, as listed inTable 2.
These values are determined using moment of inertia
calculations described in detail elsewhere[27].

For each of the two different frequency sets, we also
analyzed the data with and without accounting for ki-

netic shifts using RRKM rates. Optimized thresholds
obtained for all four types of analysis are listed in
Table 3. Kinetic shifts for the two sets of frequencies
were similar for the K+(NH3)x , x = 1–4 complexes,
and varied from 0.0 eV forx = 1 to 0.09 eV for
x = 4. These comparisons are provided inFigs. 2 and
3. For the largest cluster,x = 5, differences in the two
frequency sets are more noticeable with kinetic shifts
of 0.29 eV when all vibrational frequencies are used
and 0.25 eV when rotors are used for the torsional
motions. (Smaller kinetic shifts,Table 3, are obtained
if the cluster is analyzed using parameters appropriate
for the alternate 4,1 structure, see below.) Our initial
bias in the appropriate treatment is to incorporate the
lifetime effects and treat the torsions as rotors; how-
ever, the present study allows an independent assess-
ment of which of these treatments provides the best
results by comparison with the HPMS experimental
results of Castleman for thex = 1–4 complexes[6].
Comparison of our results with HPMS values adjusted
to 0 K (as detailed below) can be summarized by the
mean absolute deviations (MAD). To consider the
lifetime effects, we examine thex = 3 and 4 clusters
because lifetime effects are essentially absent forx =
1 and 2. Without lifetime effects included, the MAD
is 12± 1 kJ/mol when all vibrational frequencies are
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used and 8±1 kJ/mol when rotors are used for the tor-
sions. When lifetime effects are included, the results
improve to a MAD of 6±2 kJ/mol when all vibrations
are used and 5±1 kJ/mol when rotors are used for the
torsions. Similar trends are observed when all clus-
tersx = 1–4 are considered with the best MAD being

Fig. 2. Zero pressure extrapolated cross-sections for collision-induced dissociation of K+(NH3)x wherex = 1–5 (parts (a–e), respectively)
with Xe in the threshold region as a function of kinetic energy in the center-of-mass frame (lowerx-axis) and the laboratory frame (upper
x-axis). Solid lines show the best fit to the data using the model ofEq. (1) convoluted over the neutral and ion kinetic and internal energy
distributions. Dashed lines show the model cross-sections in the absence of experimental kinetic energy broadening for reactions with an
internal energy of 0 K.

3±2 kJ/mol for modeling with lifetime effects and tor-
sions treated as rotors. This comparison makes it clear
that lifetime effects are critical to modeling especially
in the larger clusters, whereas the use of rotors rather
than vibrations for the torsional modes has a more
modest effect. Theoretical values could also be used
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Fig. 2. (Continued ).

to provide an independent measure of which analy-
sis treatment is most accurate, but the results are the
same.

We also examined the effects of our treatment of
the 2D external rotational energy of the complex by
explicitly considering both the average rate constant
model and the average dissociation probability model,
as described in detail above. Threshold values for
these two models including lifetime effects and using

rotors for the torsional modes are compared inTable 3.
The other models (e.g., using vibrations as the torsions
and no lifetime treatments) show relative threshold
energies that match those shown for the average rate
constant model. It can be seen that the use of the av-
erage dissociation probability model provides slightly
lower thresholds with the difference increasing for
larger complexes, a consequence of larger kinetic
shifts. This is because the dissociation probability
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Fig. 2. (Continued ).

drops rapidly with increasing rotational energy of the
complex (because the centrifugal barrier is higher)
such that the average dissociation probability is lower
than the dissociation probability calculated for the
average total rate constant. The differences between
the two models are well within the experimental
errors cited and should be system dependent. Never-
theless, the comparison of the values obtained with
the average dissociation probability model and the
HPMS results shows a slightly improved MAD of
2 ± 1 kJ/mol.Fig. 2 shows that the model ofEq. (1)
using an average dissociation probability including
lifetime effects and torsional rotors reproduces the
data for all five systems over extended ranges of en-
ergy and magnitude. Similar reproduction of the data
can be obtained with the average rate constant model.

As noted above, we modeled the data assuming a
PSL TS located at the centrifugal barrier. The results
reported inTable 3were obtained using a barrier cal-
culated using just the ion-induced dipole potential, as
in all previous reaction systems we have studied. If the
ion-locked dipole potential is included in the determi-
nation of the centrifugal barrier, this should provide a
limit to the influence that the dipole will have on the
dissociation behavior. Differences in the analysis re-
sults for the models with and without dipoles included

(for both the average rate constant and average dissoci-
ation probability models) were very small,<2 kJ/mol,
well within our experimental error. The locked dipole
gives a higher threshold indicating that there is less ki-
netic shift, consistent with smaller centrifugal barriers
located at longer internuclear distances. The average
dissociation probability model gives slightly larger
differences (by only about 1 kJ/mol) between thresh-
olds with and without the dipole included. Although
the inclusion of the ion–dipole potential is not influ-
ential in the present case, it should be interesting in
future work to monitor this in cases where the dipole
is considerably larger than for ammonia (1.47 D)
[57].

Finally, a reviewer wondered if our consideration
of these various factors should also include the anhar-
monicities of the vibrational frequencies, in particular
for those “frustrated translational” modes that lead
to dissociation. We estimated the anharmonicities us-
ing the Morse potential expression,ωexe = ω2

e/4De,
whereωe is the appropriate vibrational frequency (of
which there arex for each K+(NH3)x complex) andDe

is the bond dissociation energy from the bottom of the
potential well. Including these anharmonicities did not
change the threshold energies for thex = 1–4 com-
plexes, whereas thex = 5 complex exhibited a shift of
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Fig. 3. Ground-state geometries of K+(NH3)x where x = 1–5.
All structures were optimized at the MP2(full)/6-31G(d) level of
theory.

about 0.01 eV. Thus, effects of these anharmonicities
are essentially negligible in the present case.

A useful measure of the looseness of the transition
state is represented by the entropies of activation,
 S‡, listed inTable 3along with other modeling pa-
rameters. These values are calculated at 1000 K using
the molecular parameters given inTables 1 and 2,
a rigid-rotor/harmonic oscillator approximation, and
standard formulae. These are generally found to be
positive, correctly reflecting the loose transition state
assumed here. Oddly, the entropy of activation for
dissociation of K+(NH3)5 is negative. Upon further
inspection, this appears to be a consequence of the
very low frequencies of this complex: five torsional
modes and two frequencies at 9 cm−1 (Table 1),
which are associated with hindered translations of the
equatorial ligands: one being an in-plane wag of one
of the three ammonias, the other being an in-plane
scissors motion of the other two ammonias.

3.2. Theoretical geometries

The configurations for the five potassium cation
clusters studied by CID were calculated as described
above. All ionic clusters favor the most symmetric
conformation of the ligands about the central potas-
sium. As expected, the lone pairs of electrons on the
ammonia ligands prefer to point towards the potas-
sium ion such that the dipole moment is directed at
the cation. Details of the calculated geometries are
given in Table 4and also displayed inFig. 4. In the
following, relative energies are all calculated at the
MP2(full)6-311+G(2d,2p)//MP2(full)6-31G(d) level
of theory and include zero point energies and BSSE
corrections.

For the single ligand complex, the geometry has
C3v symmetry, as might be anticipated. Addition of
a second ammonia occurs 180◦ away from the first
ligand, such that the two ligands can have an eclipsed
geometry (D3h) or a staggered conformation (D3d).
Our calculations find that these geometries are sepa-
rated by less than 0.005 kJ/mol with the staggered D3d

structure being lower in energy. This energy barrier
demonstrates that the torsional vibration associated
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Table 4
MP2(full)/6-31G(d) geometry optimized structures of K+(NH3)x (x = 1–5) complexesa

Reactant ion Symmetry K+–N distances (Å) ∠N–K+–N (◦) ∠K+–N–H (◦)

K+(NH3) C3v 2.793 (1) 113.8 (3)
K+(NH3)2 D3h 2.834 (2) 180.0 (1) 113.6 (6)
K+(NH3)3 C3h 2.862 (3) 120.0 (3) 113.4 (3)

113.5 (6)
K+(NH3)4 Td 2.895 (4) 109.5 (6) 113.3 (12)
K+(NH3)5 C3h 2.933 (3) 90.0 (6) 113.0 (3)

2.950 (2) 120.0 (3) 113.3 (6)
180.0 (1) 113.1 (6)

K+(NH3)4(NH3) Cs 2.858 (2) 40.4 (2) 113.3 (6)
2.898 (2) 81.0 (1) 117.3 (6)
4.958 (1) 109.0 (1) 112.5 (2)

116.3 (4) 114.5 (1)
125.5 (2)

a Numbers in parentheses refer to the number of atoms at this distance or angle.

with rotation of the ammonia ligands in opposite
directions about the N–K–N axis is accurately treated
as a free rotation.

The ground state geometry of the K+(NH3)3 com-
plex has all three nitrogen atoms in a plane about the
potassium with one hydrogen from each ammonia also
in this plane, such that the symmetry is C3h. We in-

Fig. 4. Bond dissociation energies at 0 K for K+(NH3)x wherex = 1–5 obtained using four different models (all with the average rate
constant model) withEq. (1): lifetime effects are either excluded (no RRKM) or included (RRKM); torsional motions are treated as
vibrations (torsions) or rotors. All these data are taken fromTable 3. High-pressure mass spectrometry results from Castleman[6], are
shown as closed circles. Experimental error bars (two standard deviations) are included on the (RRKM, rotors) experimental results of the
present study (open circles).

vestigated how the energy changes upon small pertur-
bations in the symmetry of the complex, specifically
with regard to rotations of the ammonia ligands. We
find that the barrier to rotation is small (<0.1 kJ/mol),
again indicating that the three torsional motions of the
ammonia ligands rotating about the K–N axes are best
viewed as free rotors.



344 C. Iceman, P.B. Armentrout / International Journal of Mass Spectrometry 222 (2003) 329–349

A similar case is encountered for the complex
containing four ammonia molecules, where all four
ammonias bind to K+ through the nitrogen atom in
a tetrahedral arrangement. When the hydrogens are
considered, there are two structures with high symme-
try, C2v and Td, which are related by a 60◦ rotation of
any two ammonia ligands. The tetrahedral geometry
is found to be lower in energy and has no imaginary
frequencies, whereas the C2v geometry is higher in
energy by only 0.1 kJ/mol and has two imaginary
frequencies. This relationship again indicates the free
rotor nature of the ligand torsions.

For the complex containing five ammonia molecules,
two structures were investigated. The first was a pen-
tagonal bipyramid having three ammonia ligands ar-
ranged symmetrically in a plane, as for the K+(NH3)3
complex, with two additional axial ammonias aligned
perpendicular to these. The optimal orientation of
the hydrogens on the axial ligands maintains C3h

symmetry with the hydrogens directed between the

Table 5
Bond dissociation energies at 0 K of K+(NH3)x (x = 1–5) complexes (in kJ/mol)

Bond This work Literature

CIDa MP2//MP2b B3LYP//B3LYPb MP2//B3LYPb HWc S.D.d HPMSe Theory

K+–(NH3) 79 ± 7 72 (75) 74 (74) 73 (75) 61 (64) 63 (65) 81 ± 9 75f

75 ± 8g 70h

71 ± 33i 70j

(NH3)1K+–(NH3) 69 ± 6 62 (65) 62 (63) 62 (65) 56 (59) 57 (60) 68 ± 9 66f

(NH3)2K+–(NH3) 59 ± 5 54 (57) 54 (54) 54 (57) 48 (51) 49 (51) 56 ± 8
(NH3)3K+–(NH3) 46 ± 6 45 (48) 43 (44) 46 (49) 41 (44) 42 (44) 49 ± 8
(NH3)4K+–(NH3) 31 ± 11 34 (38) 29 (30) 34 (38) 31 (35) 32 (35)
(NH3)4K+–(NH3)k 24 (28) 20 (21) 24 (28) 22 (27) 23 (27)

MADl 5 ± 2, 4 ± 2 5 ± 2, 4 ± 2 4 ± 2, 4 ± 2 10 ± 6, 8 ± 5 9 ± 5, 8 ± 4 2 ± 1

a Experimental values from this work. Threshold uncertainties reported as 2σ .
b Ab initio calculations using the level shown with basis sets of 6-311+G(2d,2p) for single point calculations and 6-31G(d) for geometry

optimizations and frequency determinations. Italics show energies without including corrections for BSSE.
c MP2//MP2 calculations using the same basis set as footnote b except for the potassium ion where the Hay–Wadt ECP is used.
d MP2//MP2 calculations using the same basis set as footnote b except for the potassium ion where the Stuttgart–Dresden ECP is used.
e HPMS values from[6] converted to 0 K values, seeTable 6.
f Kaupp and Schleyer[13]. Values have been corrected for zero-point energy.
g Davidson and Kebarle[5].
h Magnusson and Moriarty[14]. Value has been corrected for zero-point energy.
i Marinelli and Squires[7].
j Berthod and Pullman[12]. Value has been corrected for zero-point energy.
k Values for the K+(NH3)4(NH3) geometry.
l Mean absolute deviations from CID experimental values. Values for the K+(NH3)4(NH3) are excluded. Italics represent MADs for

theoretical values without corrections for BSSE.

equatorial ligands. This geometry had no imaginary
frequencies although there were five low frequency
torsional motions plus the hindered translations noted
above. In part because there was a sharp decrease
in intensity of the K+(NH3)5 ions compared to the
smaller complexes, we also considered a structure
in which four ammonias complete the first solvation
shell with the fifth ligand hydrogen-bonded in a sec-
ond shell. A converged structure for such a complex
having no imaginary frequencies was found. Here the
fifth ligand is hydrogen bonded to two of the four lig-
ands in the first solvation shell, such that the complex
has Cs symmetry (Fig. 4). The Cs hydrogen bonded
structure is calculated to lie 10 kJ/mol higher in en-
ergy than the C3h configuration. At 298 K, the relative
free energies give a similar difference of 16 kJ/mol.

As can be seen inTable 4, the metal–ligand bond
distances gradually increase as the number of ligands
increases. This is consistent with the overall weak-
ening of the metal-ligand bonds with an increase in
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complex size. Bond angles for K–N–H remain nearly
identical for all complexes. The only exceptions to
these trends involve the hydrogen bonding Cs com-
plex of K+(NH3)5. Here, two of the ligands attached
directly to the metal have bond lengths similar to the
x = 3 complex, whereas the two ligands attached to
the metal but engaged in hydrogen bonding to the fifth
ligand have bond lengths like thex = 4 complex.
Here, the perturbation of the hydrogen bonding is ev-
ident in the K–N–H bond angles.

3.3. Theoretical bond energies

Bond energies calculated as described above in-
cluding ZPE and BSSE corrections are listed in
Table 5. Values without BSSE are also listed. Overall,
the trends in all these values are similar, although the
values involving ECPs are systematically smaller than
the other values. Theoretical literature references per-
taining to the potassium ammonia systems use a range
of different methods to calculate binding energies.
For K+(NH3), Berthod and Pullman[12] performed
SCF calculations keeping the ligand geometry fixed
and employing the basis set described by Wachters

Fig. 5. Comparison of experimental (closed symbols) bond dissociation energies at 0 K for K+(NH3)x wherex = 1–5 from both the present
CID data (RRKM, rotors, average dissociation probability) and HPMS results of Castleman[6], with theoretical results (open symbols) at
several levels of theory taken fromTable 5.

[58] for potassium. Kaupp and Schleyer[13] did
Hartree Fock calculations on both K+(NH3) and
K+(NH3)2 using a quasi-relativistic energy-adjusted
pseudopotential for potassium. The most recent in-
vestigation of K+(NH3) was by Magnusson and Mo-
riarty [14], who gave energies at the MP2 level and
used a 6-311+G(d,p) basis for N and H and a metal
basis again derived from Wachters[58] by Rosi and
Bauschlicher[59,60]. None of these studies included
ZPE or BSSE corrections. To facilitate comparison
with the values calculated here,Table 5 reports the
literature values corrected for these zero point ener-
gies: 7 kJ/mol in the case of K+(NH3) and 6 kJ/mol
for K+(NH3)2.

4. Discussion

4.1. Comparison of theoretical and experimental
bond energies

As seen inFig. 5, the bond dissociation energies
obtained through CID or HPMS and our theoretical
results qualitatively follow similar trends. The bond
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energies decrease monotonically and are seen to do
so at approximately the same rate for all theoretical
methods. In general, the theoretical trends reproduce
the CID data better than the HPMS data, but absolute
theory values forx = 3 and 4 better reproduce the
HPMS results.

The three theoretical methods used here with
all-electron basis sets, MP2//MP2, B3LYP//B3LYP,
and MP2//B3LYP, provide very similar results. For
example, the two methods employing MP2 single
point energies both show good agreement with both
the HPMS results, MADHPMS = 4 ± 3 kJ/mol, and
with our CID results, MADCID = 4 ± 2 kJ/mol.
The B3LYP//B3LYP values show similar agree-
ment, MADHPMS = 5 ± 2 kJ/mol and MADCID =
5 ± 2 kJ/mol. Thus, there is little to distinguish these
three methods. However, if the BSSE corrections are
eliminated, B3LYP energies change very little (about
1 kJ/mol), whereas the MP2 energies change by about
3 kJ/mol. These changes lead to slightly better agree-
ment with the experimental results, MADHPMS =
3 ± 2 kJ/mol and MADCID = 4 ± 2 kJ/mol.

The ECP calculations show very similar agree-
ment with each other: Hay–Wadt, MADHPMS =
12±5 kJ/mol and MADCID = 10±6 kJ/mol, whereas
Stuttgart–Dresden, MADHPMS = 10 ± 4 kJ/mol and
MADCID = 9 ± 5 kJ/mol. Ignoring BSSE corrections
improves the agreement slightly (to MADCID of about
8 kJ/mol), but the ECP calculations are systematically
low and do not reproduce the experimental trends as
well as the all-electron calculations.

For the K+(NH3)5 complex, the theoretical calcu-
lations clearly indicate that the experimental results
are most consistent with the complex in which all
five ligands are attached directly to the potassium ion.
The 4,1 complex, in which one of the ligands is in the
second solvent shell, is calculated to be less stable
by 10 kJ/mol, less consistent with the experimental
results than the 5,0 complex. Experimentally, it is
possible that ions having both structures are formed
in our flow tube source. However, our threshold mea-
surements should be sensitive to the most weakly
bound of these if they are both present in reasonable
amounts. Therefore, the good agreement between

theory for the 5,0 complex and our experimental
threshold suggests that the 5,0 structure is formed
predominantly.

The few theoretical values available for these sys-
tems in the literature[12–14]are also given inTable 5.
Reasonable agreement is observed in all cases, with
the values of Kaupp and Schleyer[13] being very
close to the present theoretical values.

In addition to the HPMS results from Castleman,
there are two additional experimental values available
in the literature for K+(NH3) (Table 5). The earlier
HPMS study of Davidson and Kebarle[5] provides
a slightly lower value for the bond energy of this
complex, but one within the experimental uncertain-
ties. The early CID work of Marinelli and Squires[7]
agrees with the other determinations within its larger
uncertainty.

4.2. Conversion from 0 to 298 K

In order to facilitate comparison of our CID 0 K
values for the bond dissociation energies (BDEs) with
other commonly used experimental conditions, con-
versions are done to convert to 298 K bond enthalpies
and free energies (Table 6). These conversions use the
frequencies calculated at the MP2(full)/6-31G(d) level
under the rigid rotor/harmonic oscillator approxima-
tion. Uncertainties in these values are determined by
scaling the vibrations±10% for non-metal ligand fre-
quencies and by a factor of one-half and two for metal
ligand frequencies, usually the lowest energy frequen-
cies. The torsional modes are treated as rotors, with
the associated rotational constants scaled by factors of
one-half and two.

For the K+(NH3)x , x = 1–4 complexes, the cal-
culated entropy corrections can be compared directly
with values obtained by Davidson and Kebarle[5] and
Castleman[6], also listed inTable 6. It can be seen
that the calculated entropies of dissociation agree with
the experimental values quite nicely. In this regard, it
is useful to note that if these entropies are calculated
using alternate molecular parameters (those in which
the torsions are treated as vibrations), theT S298

values forx = 2–4 are about 6± 1 kJ/mol lower than
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Table 6
Enthalpies and free energies for (NH3)x−1K+–NH3 at 0 and 298 K in kJ/mola

System  H0  H298 − H c
0  H298 T S298  G298

K+(NH3) 79 ± 7b 81 ± 9,
71 ± 9

3.3 ± 3.7 82± 8 84 ± 8,
75 ± 8

27 ± 8c 29 ± 5,
25 ± 5

55 ± 11 55 ± 9,
49 ± 8

K+(NH3)2 69 ± 6b 68 ± 9 0.6 ± 3.9 70± 7 68 ± 8 27 ± 17c 28 ± 5 42 ± 18 40 ± 9
K+(NH3)3 59 ± 5b 55 ± 9 1.5 ± 3.8 61± 6 56 ± 8 29 ± 15c 29 ± 5 32 ± 17 27 ± 9
K+(NH3)4 46 ± 6b 49 ± 9 0.0 ± 4.2 46± 7 49 ± 8 36 ± 16c 32 ± 5 11 ± 18 17 ± 9
K+(NH3)5 31 ± 11b −1.0 ± 1.8 30± 12 22± 19c 8 ± 22
K+(NH3)4(NH3) 22d 1.6 ± 6.5 24± 7 31 ± 19c −7 ± 20

a In all cases, uncertainties are listed as 2σ , roman values are from this work, HPMS values from Castleman[6] are in bold, and those
in italics are from Davidson and Kebarle[5]. Uncertainties (2σ ) for the HPMS values have been estimated as 8 kJ/mol (2σ ) as per[5].

b Experimental values from this work (Table 5).
c Values were computed using standard formulas and molecular constants calculated at the MP2(full)/6-31G(d) level. The uncertainties

correspond to 10% variations in the vibrational frequencies of the ligands and two-fold variations in the metal ligand-frequencies and
rotational constants for the torsional modes.

d Average theoretical value fromTable 5.

the values listed inTable 6. (The value forx = 1 is
the same because there are no torsions.) Thus, when
the torsions are treated as vibrations, the agreement
with the experimental values is worse, although still
within the estimated uncertainties. This compari-
son to experimentally determined entropies provides
another reason to believe that the treatment of the
torsional motions as rotors is more appropriate than
as vibrations.

Finally, we note that the entropic corrections cal-
culated for the two structures of K+(NH3)5 are quite
distinct and lead to a free energy difference between
the two structures of 15 kJ/mol (Table 6). It seems
clear that an equilibrium study on this complex would
be able to confirm the theoretical prediction regarding
the ground state geometry.

5. Conclusion

Bond dissociation energies for the K+(NH3)x (x =
1–5) are determined using threshold CID. These ex-
perimental values are displayed inTable 6andFig. 5.
The results are in excellent agreement with HPMS
results of Davidson and Kebarle[5] for K+(NH3)
and Castleman[6] for K+(NH3)x (x = 1–4). The
results agree reasonably with ab initio theoretical

calculations at the several levels of theory but values
calculated using ECPs are systematically low. These
calculations indicate that the geometries of the ligands
prefer the most symmetrical configuration available
in all five complexes.

Evaluation of the treatments of torsions as vibra-
tions or rotors suggests that better agreement with both
literature and theory is obtained by including these
modes as rotors in our analysis of the CID data. This
was true in comparisons of absolute bond energies
and entropies of dissociation, although differences
are within experimental uncertainties. Addition of the
ion–dipole potential to the treatment of the transition
state had little effect on the threshold modeling for
these complexes although it systematically reduces
the kinetic shift. Further investigation of the dipole ef-
fects would be useful especially with complexes that
have a larger dipole moment than ammonia. We also
considered whether anharmonicities of the vibrations
corresponding to the “frustrated translations” leading
to dissociation might influence the thresholds mea-
sured but found negligible differences for all cluster
sizes. Finally, we examined two models for the 2D
external rotations of the energized complexes, aver-
age rate constant and average dissociation probability.
The latter model leads to slightly larger kinetic shifts
than the former model, thereby providing slightly
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better agreement of the CID thresholds with the
HPMS bond energies.
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